Rebuilding Phrase Table Scores from Monolingual Resources Using Neural Networks Vector Representations

نویسندگان

  • Amir Pouya Aghasadeghi
  • Mohadeseh Bastan
  • Shahram Khadivi
چکیده

In this paper, we propose two new features for estimating phrase-based machine translation parameters from mainly monolingual data. Our method is based on two recently introduced neural network vector representation models for words and sentences. It is the first time that these models have been used in an end to end phrase-based machine translation system. Scores obtained from our method can recover more than 80% of BLEU loss caused by removing phrase table probabilities. We also show that our features combined with the phrase table probabilities improve the BLEU score by absolute 0.74 points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transduction Recursive Auto-Associative Memory: Learning Bilingual Compositional Distributed Vector Representations of Inversion Transduction Grammars

We introduce TRAAM, or Transduction RAAM, a fully bilingual generalization of Pollack’s (1990) monolingual Recursive Auto-Associative Memory neural network model, in which each distributed vector represents a bilingual constituent—i.e., an instance of a transduction rule, which specifies a relation between two monolingual constituents and how their subconstituents should be permuted. Bilingual ...

متن کامل

Learning Bilingual Distributed Phrase Representations for Statistical Machine Translation

Following the idea of using distributed semantic representations to facilitate the computation of semantic similarity between translation equivalents, we propose a novel framework to learn bilingual distributed phrase representations for machine translation. We first induce vector representations for words in the source and target language respectively, in their own semantic space. These word v...

متن کامل

Learning Semantic Representations for Nonterminals in Hierarchical Phrase-Based Translation

In hierarchical phrase-based translation, coarse-grained nonterminal Xs may generate inappropriate translations due to the lack of sufficient information for phrasal substitution. In this paper we propose a framework to refine nonterminals in hierarchical translation rules with real-valued semantic representations. The semantic representations are learned via a weighted mean value and a minimum...

متن کامل

Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks

Natural language parsing has typically been done with small sets of discrete categories such as NP and VP, but this representation does not capture the full syntactic nor semantic richness of linguistic phrases, and attempts to improve on this by lexicalizing phrases only partly address the problem at the cost of huge feature spaces and sparseness. To address this, we introduce a recursive neur...

متن کامل

Learning Automatic Acquisition of Subcategorization Frames Using Bayesian Inference and Support Vector Machines

Learning Bayesian Belief Networks (BBN) from corpora and Support Vector Machines (SVM) have been applied to the automatic acquisition of verb subcategorization frames for Modern Greek. We are incorporating minimal linguistic resources, i.e. basic morphological tagging and phrase chunking, to demonstrate that verb subcategorization, which is of great significance for developing robust natural la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1506.00406  شماره 

صفحات  -

تاریخ انتشار 2015